

Methodologies applied to the CEIP GNFR gap-filling 2020

Part I:

Main Pollutants (NO_x, NMVOCs, SO_x, NH₃, CO),

> Particulate Matter (PM_{2.5}, PM₁₀, PM_{coarse})

and Black Carbon (BC) for the years 2000 to 2018

Technical report CEIP 01/2020

Bradley Matthews, Robert Wankmueller

Project management

Katarina Mareckova & Sabine Schindlbacher

Authors

Bradley Matthews Robert Wankmueller

Layout and typesetting

Bradley Matthews

CONTENTS

CONTENTS	S	. 3
1. Introd	duction	. 3
2. Sumn	nary of the of the quality control and gap-filling process	. 4
3. Gap-f	filling 2020	13
4. Data	availability and gap-filling method for other regions	18
4.1.	Kazakhstan within the extended EMEP domain (KZE) and outside the extended EMEP domain (KZ)	18
4.3.	Turkmenistan (TM) and Uzbekistan (UZ)	18
4.3.1. domain (T	Rest of Turkmenistan in the extended EMEP domain (TME) and Turkmenistan in the former official EMEP TMO)	18
4.3.2. (UZO)	Rest of Uzbekistan in the extended EMEP domain (UZE) and Uzbekistan in the former official EMEP domair 19	۱
4.4. (MED), No	Sea regions: Atlantic Ocean (ATL), Baltic Sea (BAS), Black Sea (BLS), Caspian Sea (CAS), Mediterranean Sea orth Sea (NOS)	19
4.5. domain (A	Aral Lake: Rest of Aral Lake in the extended EMEP domain (ARE), Aral Lake in the former official EMEP ARO)	19
4.6. former of	Remaining Asian Areas in the extended EMEP domain (ASE) and Modified Remaining Asian Areas in the ficial EMEP domain (ASM)	19
4.7.	North Africa (NOA)	19
5. Refer	ences	20
Annex I: El	MEP Country Codes	21
Annex II: C	Cross-walk between NFR and GNFR sectors	23

1. Introduction

The EMEP Centre on Emission Inventories and Projections (CEIP) operates the UNECE/EMEP emission database (WebDab) which contains information on air pollutant emissions and projections from the Parties to the Convention on Long-Range Transboundary Air Pollution (LRTAP) (UNECE 1979). Furthermore, emissions used in EMEP models (gap-filled emissions) and gridded emissions in Google maps are synthesized and made available on the CEIP website (www.ceip.at, CEIP 2020).

Data processed by CEIP were reported by the Parties to the LRTAP Convention as sectoral emissions (NFR14) and National Total emissions according to the UNECE guidelines for reporting emissions and projections data under the LRTAP Convention, Annex I (UNECE 2014). For gap-filling and gridding by CEIP, the NFR14 sector data are aggregated to 13 GNFR sectors. In several cases, no data were submitted by the countries, or the reporting is not complete or contains errors. Before these emission data can be used by modelers, missing/erroneous information have to be filled in/replaced. To gap-fill/replace emissions data, CEIP applies a systematic quality control and gap-filling routine. After gap-filling is complete, the territorial sector emissions are then mapped spatially using the EMEP grid system.

This documentation describes how the reported emissions of main pollutants (NO_x , NMVOCs, SO_x , NH_3 , and CO), particulate matter ($PM_{2.5}$, PM_{10} and PM_{coarse}) and black carbon (BC) are subject to a central quality control and, where necessary, how these data are gap-filled/replaced. The document also explains how emissions from other regions in the EMEP domain, which are not obliged to report emissions data, are incorporated. This year CEIP has updated and streamlined procedures. The reasons for undertaking this step were: 1) the need to incorporate new independent estimates; and 2) the ever-increasing number of years for which the reported data need to be evaluated and processed.

2. Summary of the of the quality control and gap-filling process

The first step is to collect and synthesize the official submissions by the Parties to the LRTAP Convention. All submissions received **up to 17**th **April 2020** were used as a basis for the gap-filled data set. Parties report their emissions inventories to the LRTAP Convention as sectoral emissions (NFR14) and National Total emissions according to the UNECE guidelines for reporting emissions and projections data under the LRTAP Convention, Annex I (UNECE 2014). The reported NFR sector emissions are then aggregated to the 13 GNFR sectors used for the gridding procedure (A cross-walk between the NFR and aggregated GNFR sectors is provided in Annex II, Table A 2):

- 1. A_PublicPower
- 2. B_Industry
- 3. C_OtherStationaryComb
- 4. D_Fugitive
- 5. E_Solvents
- 6. F_RoadTransport
- 7. G_Shipping
- 8. H_Aviation
- 9. I_Offroad
- 10. J_Waste
- 11. K_AgriLivestock
- 12. L_AgriOther
- 13. M_Other

The dataset of reported emissions is then checked to ascertain where data are missing and to evaluate the plausibility of those emissions estimates which are reported. To do this a routine, coded in the open source statistical programming environment, R¹, retrieves the current dataset of reported emissions and processes these data with other datasets (previously reported and gap-filled EMEP datasets, independent emissions datasets and data on economic indices). For each pollutant of each country, quality control graphs are generated, with which assigned experts can evaluate the plausibility of the reported emissions.

¹ <u>https://www.r-project.org/</u>

a)

b)

Figure 1: Quality control graphs for evaluating the plausibility of Albania's reported CO emissions both at the national total (above) and GNFR sector level.

As the example for Albania's CO emissions (Figure 1a) demonstrates, the time series of the reported national totals are compared against the same emissions reported in the previous year, as well as the time series contained within the gap-filled EMEP dataset of the previous year. For comparison, respective national totals from independent sources are also plotted. The independent datasets used are the v4.3.2 EDGAR dataset² (1970-2012, Crippa et al. (2018)) and the latest v6b ECLIPSE dataset³ (2000, 2005, 2010, 2015 and 2020 projection) from the Greenhouse gas – Air pollution Interactions and Synergies model, GAINS (Amann et al., 2011). Note that the v6b ECLIPSE dataset is an advanced version of the soon to be published dataset that was kindly provided to CEIP by IIASA. Below this graph of the time series of national total emissions, a scatterplot and boxplot illustrate whether the sum of sector emissions added up to the reported national totals. Finally, the national total time series is normalized against economic statistics from the World Bank⁴ and plotted against respective ranges as calculated from the previously gap-filled EMEP dataset and from the EDGAR and GAINS datasets.

In addition to these graphs at the national total level, corresponding quality control graphs are generated to evaluate the reported sectoral emissions. As Figure 1b demonstrates, the sectoral emissions and relative distributions are compared against those reported and gap-filled in the previous year and against respective values from the EDGAR and GAINS datasets.

Such graphs are generated for all the main pollutants, as well as for PM_{2.5}, PM₁₀ and BC. However, for the particulate emissions, additional mass balance assessment graphs are also generated (Figure 2).

² <u>https://edgar.jrc.ec.europa.eu/overview.php?v=432 AP</u>

³ ftp://ftp.iiasa.ac.at/outgoing/air/ECLIPSE_V6b/ECLIPSE_V6b-info_vJan20_s.pdf

⁴ <u>http://datatopics.worldbank.org/world-development-indicators/</u>

Based on the generated quality control graphs, CEIP experts check for where data are missing and importantly whether the reported emissions are plausible. Where data from 2000 onwards are missing and/or implausible, CEIP experts must select the most appropriate gap-filling/replacement option from a set of predefined methods:

 Replacement – where no data are available or no plausible data are available, the most appropriate option is to replace the time series with the respective estimates from the interpolated GAINS ECLIPSE v6b dataset. This option can be applied to either all GNFR sectors (Figure 3) or in certain cases to a single GNFR sector (Figure 4).

Figure 4: Example of Replacement of a single sector (Turkey, CO)

• *Extrapolation* - where a significant portion of the data appears plausible, it is appropriate to extrapolate the missing/implausible years at the beginning and/or end of the time series. In this case the expert must decide the trend with which to extrapolate the national total:

- Constant emissions are assumed (Figure 5); or where several years need to be extrapolated...
- Using the respective trends from GAINS estimates or even reported national totals (where national totals seem plausible) (Figure 6)

Unlike *Replacement*, this option can only be applied to all sectors. In this case, the national total is in fact extrapolated, and subsequently split between sectors based on a sector split of nearest year deemed plausible.

Figure 5: Example of single year Extrapolation (Liechtenstein, NO_x)

Figure 6: Example of multi-year Extrapolation (Ukraine, SO_x)

 Ratio – where the PM_{2.5} emissions are plausible, yet BC has not been reported or appears implausible, this option is considered the most appropriate. For this option, the reported sector PM_{2.5} emissions are multiplied by BC fractions (GNFR sector-specific) derived from respective GAINS estimates of PM_{2.5} and BC emissions. In most cases, the ratios from the

respective country are taken (Figure 7); however, for small countries which are not resolved by GAINS, another country's BC fractions can be selected (Figure 8). Again this option can be applied to either all sectors or a single sector if e.g. there is mass balance issue for the said GNFR sector.

Figure 7: Example of BC gap-filling using reported PM_{2.5} emissions and BC fractions from GAINS (Austria)

Figure 8: Example of BC gap-filling using reported PM_{2.5} emissions and BC fractions from GAINS but from another Country (Liechtenstein using the GAINS BC fractions from Switzerland)

 Interpolation – this option can be applied on its own or in combination with the extrapolation methods (Figure 9). In this case missing/implausible emissions for years in between periods of plausible data are simply replaced by linear interpolation.

Figure 9: Example where additional interpolation was required (Belarus, NH₃)

CEIP experts thus work through a spreadsheet survey summarising the plausibility of the reported emissions, noting missing data and selecting the most appropriate gap-filling option (Figure 10). Once this spreadsheet is complete, a subsequent R routine reads these instructions and implements the gap-filling procedures thus generating a complete EMEP dataset to be gridded.

Before the dataset is finalised, the routine finally corrects for any residual errors (e.g. rounding errors) by replacing all national totals with the respective sum of totals. Any instances where sectoral emissions of $PM_{2.5} > PM_{10}$ are corrected by replacing the PM_{10} emissions with corresponding $PM_{2.5}$ emissions. Coupled to this step, the routine calculates the emissions of coarse particulate matter (PM_{coarse}) by subtracting sectoral $PM_{2.5}$ emissions from the corresponding PM_{10} emissions.

A		В	С	D	E	F	G	Н	1	J	K	L	M	N	0
				Complete time series of	Plausible NTs and source-sector	Gapfilling /					Extrapolation			Interpolation	Interpolation
1 CC	Count	try	Component	NTs	distributions	Replacement required	Method	Start	End	Sectors	trend	Split	Ratio	required	years
					No. Implausible year to year										
					variations and sharp changes in										
2 AL	Albania	ia d	0	2018 missing	source sector distributions and NTs	Yes	Replacement	2000	2018	AU				No	
	1				Yes. However, massive jump in 2016										
					and 2017 much above independent										
3 AL	Albania	ia N	NH3	2018 missing	estimates	Yes	Extrapolation	2016	2018	AU	GAINS	2015		No	
					Yes, but only until 2008, 2009 onwards										
					sees sharp shifts in NTs and sector										
4 AL	Albania	ia N	NMVOC	2018 missing	distributions	Yes	Extrapolation	2009	2018	Δ11	GAINS	2008		No	
	-	-		2010 11125115	No. Implausible year to year		Exclopolation	2003	2010		C	2000			
					variations from 2005 onwards and										
5 AL	Albania	ia N	NOx	2018 missing	sharp changes in source sector	Yes	Replacement	2000	2018	AII				No	
-		-	10.1	2010 11125115	No. Implausible year to year		neprocentent	2000							
					variations from 2009 onwards and										
5 AL	Albania	ia F	PM10	2018 missing	sharp changes in source sector	Yes	Extrapolation	2009	2018	AU	GAINS	2008		No	
7 AL	Albania	ia F	PM2.5	2010 onwards missing	Yes up until 2008	Yes	Extrapolation	2009	2018	All	GAINS	2008		No	
		-		Loro on or	No. Implausible year to year		Excloperation	2005			0.1110	2000			
					variations and sharp changes in										
					source sector distributions Also										
8 AL	Albania	ia	SOx	2018 missing	Emissions very high compared to	Yes	Replacement	2000	2018	AII				No	
9 AL	Albania	ia F	BC	No reported data		Yes	Ratio	2000	2018	All			AL	No	
_	-	-		Many years missing	Plausible NTs: however sector split										
0 AM	Armeni	nia (0	from 2004 onwards	looks implausible	Yes	Replacement	2000	2018	AU				No	
	1			Many years missing											
				from 2004 onwards and	Some Plausible NTs from 2004										
				pre 2004 some near-zero	onwards: however sector split looks										
.1 AM	Armeni	nia 🕴	NH3	NTs have been reported	implausible.	Yes	Replacement	2000	2018	AII				No	
					Plausible NTs and sector splits look										
				Many years missing	ok: however, many years no sector										
.2 AM	Armeni	nia M	NMVOC	from 2004 onwards	data has been reported just NTs	Yes	Replacement	2000	2018	AII				No	
					Plausible NTs and sector splits look										
					ok (maybe some missing sectoral										
				Many years missing	emissions); however, many years no										
.3 AM	Armeni	nia M	NOx	from 2004 onwards	sector data has been reported just	Yes	Replacement	2000	2018	AII				No	
					NTs seem rather low, sector splits										
					also varying drastically between those										
.4 AM	Armeni	nia F	PM10	Many NTs missing	reported years	Yes	Replacement	2000	2018	All				No	
					NTs seem rather low, sector splits										
					also varying drastically between those										
.5 AM	Armeni	nia F	PM2.5	Many NTs missing	reported years	Yes	Replacement	2000	2018	All				No	
				Many years missing	NTs seem rather high, sector splits										
.6 AM	Armeni	nia S	SOx	from 2004 onwards	seem to be missing important sectors	Yes	Replacement	2000	2018	All				No	
					NTs seem rather low, sector splits										
					also varying drastically between those										
.7 AM	Armeni	nia E	BC	Many NTs missing	reported years	Yes	Replacement	2000	2018	All				No	
.8 AT	Austria	ia (00	Yes	Yes	No								No	
.9 AT	Austria	ia N	NH3	Yes	Yes	No								No	
10 AT	Austria	a N	NMVOC	Yes	Yes	No								No	
1 AT	Austria	ia N	NOx	Yes	Yes	No								No	
	1			Pre 2020. onlv 1990 &							1				I I

Figure 10: Screenshot of the quality control evaluation- and gap-filling instruction spreadsheet for 2020.

3. Gap-filling 2020

Table A lists all the pollutants and countries for which gap-filling/replacement was required. The Table also details which methods were applied to complete/replace the respective time series.

In addition to this summary, further supplementary documentation of the 2020 quality control and gap-filling is attached to this document as a zip folder containing:

- All quality control graphs for each pollutant of each reporting EMEP country
- The complete spreadsheet survey documenting the expert judgement of plausibility and the selection of the gap-filling methods for each pollutant of each reporting EMEP country
- Output graphs for each pollutant of each reporting EMEP country plotting reported emissions together with the same emissions, gap-filled or replaced emissions which were incorporated into the final EMEP dataset.

Table A: List of Parties and pollutants requiring gap-filling or replacement and the methods applied.

СС	Country	Component	Gapfilling / Replacement required	Method	Start	End	Sectors	Extrapolation trend	Split	Ratio	Interpolation required	Interpolation years
AL	Albania	со	Yes	Replacement	2000	2018	All				No	
AL	Albania	NH3	Yes	Extrapolation	2016	2018	All	GAINS	2015		No	
AL	Albania	NMVOC	Yes	Extrapolation	2009	2018	All	GAINS	2008		No	
AL	Albania	NOx	Yes	Replacement	2000	2018	All				No	
AL	Albania	PM10	Yes	Extrapolation	2009	2018	All	GAINS	2008		No	
AL	Albania	PM2.5	Yes	Extrapolation	2009	2018	All	GAINS	2008		No	
AL	Albania	SOx	Yes	Replacement	2000	2018	All				No	
AL	Albania	BC	Yes	Ratio	2000	2018	All			AL	No	
AM	Armenia	СО	Yes	Replacement	2000	2018	All				No	
AM	Armenia	NH3	Yes	Replacement	2000	2018	All				No	
AM	Armenia	NMVOC	Yes	Replacement	2000	2018	All				No	
AM	Armenia	NOx	Yes	Replacement	2000	2018	All				No	
AM	Armenia	PM10	Yes	Replacement	2000	2018	All				No	
AM	Armenia	PM2.5	Yes	Replacement	2000	2018	All				No	
AM	Armenia	SOx	Yes	Replacement	2000	2018	All				No	
AM	Armenia	BC	Yes	Replacement	2000	2018	All				No	
AT	Austria	BC	Yes	Ratio	2000	2018	All			AT	No	
AZ	Azerbaijan	CO	Yes	Replacement	2000	2018	All				No	
AZ	Azerbaijan	NH3	Yes	Extrapolation	2008	2018	All	GAINS	2007		No	
AZ	Azerbaijan	NMVOC	Yes	Replacement	2000	2018	All				No	
AZ	Azerbaijan	NOx	Yes	Replacement	2000	2018	All				No	
AZ	Azerbaijan	PM10	Yes	Replacement	2000	2018	All				No	
AZ	Azerbaijan	PM2.5	Yes	Replacement	2000	2018	All				No	
AZ	Azerbaijan	SOx	Yes	Replacement	2000	2018	All				No	
AZ	Azerbaijan	BC	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	CO	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	NH3	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	NMVOC	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	NOx	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	PM10	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	PM2.5	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	SOx	Yes	Replacement	2000	2018	All				No	
BA	Bosnia and Herzegovina	BC	Yes	Replacement	2000	2018	All				No	
BY	Belarus	СО	Yes	Extrapolation/	2000/2017	2006/2018	All	GAINS/GAINS	2007/2016		Yes	2013
				Extrapolation								
BY	Belarus	NH3	Yes	Extrapolation/	2000/2017	2006/2018	All	NT/NT	2007/2016		Yes	2013
				Extrapolation								
BY	Belarus	NMVOC	Yes	Extrapolation/ Extrapolation	2000/2017	2006/2018	All	GAINS/GAINS	2007/2016		Yes	2013

СС	Country	Component	Gapfilling / Replacement	Method	Start	End	Sectors	Extrapolation trend	Split	Ratio	Interpolation required	Interpolation years
			required									
BY	Belarus	NOx	Yes	Extrapolation/ Extrapolation	2000/2017	2006/2018	All	NT/NT	2007/2016		Yes	2013
BY	Belarus	PM10	Yes	Replacement	2000	2018	All				No	
BY	Belarus	PM2.5	Yes	Replacement	2000	2018	All				No	
BY	Belarus	SOx	Yes	Extrapolation	2000	2006	All	GAINS	2007		Yes	2013
BY	Belarus	BC	Yes	Replacement	2000	2018	All				No	
DK	Denmark	BC	Yes	Ratio	2000	2018	D_Fugitive			DK	No	
GE	Georgia	CO	Yes	Replacement	2000	2018	All				No	
GE	Georgia	NH3	Yes	Replacement	2000	2018	All				No	
GE	Georgia	NMVOC	Yes	Replacement	2000	2018	All				No	
GE	Georgia	NOx	Yes	Replacement	2000	2018	All				No	
GE	Georgia	PM10	Yes	Replacement	2000	2018	All				No	
GE	Georgia	PM2.5	Yes	Replacement	2000	2018	All				No	
GE	Georgia	SOx	Yes	Replacement	2000	2018	All				No	
GE	Georgia	BC	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	CO	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	NH3	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	NMVOC	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	NOx	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	PM10	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	PM2.5	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	SOx	Yes	Replacement	2000	2018	All				No	
KG	Kyrgyzstan	BC	Yes	Replacement	2000	2018	All				No	
KZT	Kazakhstan	со	Yes	Extrapolation	2017	2018	All	GAINS	2016		Yes	2001:2004/2 006:2009
KZT	Kazakhstan	NH3	Yes	Replacement	2000	2018	All				No	
KZT	Kazakhstan	NMVOC	Yes	Replacement	2000	2018	All				No	
KZT	Kazakhstan	NOx	Yes	Extrapolation	2017	2018	All	GAINS	2016		Yes	2001:2004/2 006:2009
KZT	Kazakhstan	PM10	Yes	Replacement	2000	2018	All				No	
KZT	Kazakhstan	PM2.5	Yes	Replacement	2000	2018	All				No	
KZT	Kazakhstan	SOx	Yes	Replacement	2000	2018	All				No	
KZT	Kazakhstan	BC	Yes	Replacement	2000	2018	All				No	
LI	Liechtenstein	CO	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
LI	Liechtenstein	NH3	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
LI	Liechtenstein	NMVOC	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
LI	Liechtenstein	NOx	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
LI	Liechtenstein	PM10	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
LI	Liechtenstein	PM2.5	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
LI	Liechtenstein	SOx	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
LI	Liechtenstein	BC	Yes	Ratio	2000	2018	All			СН	No	

СС	Country	Component	Gapfilling /	Method	Start	End	Sectors	Extrapolation	Split	Ratio	Interpolation	Interpolation
			Replacement					trend			required	years
1.7	Lithuania	NINAVOC	required	Extranalation	2000	2004	A.II.	CAINE	2005		No	
	Lithuania	NIVIVUC	Yes	Extrapolation	2000	2004	All	GAINS	2005		No	
	Lithuania		Yes	Extrapolation	2000	2004		GAINS	2005		NO	
	Lithuania	PIVIZ.5	Yes	Extrapolation	2000	2004		GAINS	2005	1.7	NO	
	Litituarila	BC	Yes	Ratio	2000	2018	All				No	
LU	Luxembourg	BC	Yes	Ratio	2000	2018	All	Ctable	2017	LU	NO	
IVIC	Monaco		Yes	Extrapolation	2018	2018	All	Stable	2017		NO	
MC	Monaco	NH3	Yes	Extrapolation	2018	2018	All	Stable	2017		NO	
MC	Monaco	NMVOC	Yes	Extrapolation	2018	2018	All	Stable	2017		NO	
MC	Monaco	NOX	Yes	Extrapolation	2018	2018	All	Stable	2017		NO	
MC	Monaco	PM10	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MC	Monaco	PM2.5	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MC	Monaco	SOx	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MC	Monaco	BC	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	CO	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	NH3	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	NMVOC	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	NOx	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	PM10	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	PM2.5	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	SOx	Yes	Extrapolation	2018	2018	All	Stable	2017		No	
MD	Republic of Moldova	BC	Yes	Ratio	2000	2018	All			MD	No	
ME	Montenegro	NMVOC	Yes	Replacement	2000	2018	F_RoadTransport				No	
ME	Montenegro	PM10	Yes	Replacement	2000	2018	All				No	
ME	Montenegro	PM2.5	Yes	Replacement	2000	2018	All				No	
ME	Montenegro	BC	Yes	Replacement	2000	2018	All				No	
MT	Malta	CO	Yes	Extrapolation	2000	2004	All	GAINS	2005		No	
MT	Malta	NMVOC	Yes	Extrapolation	2000	2005	All	GAINS	2006		No	
MT	Malta	PM10	Yes	Extrapolation	2000	2004	All	GAINS	2005		No	
MT	Malta	PM2.5	Yes	Extrapolation	2000	2004	All	GAINS	2005		No	
MT	Malta	BC	Yes	Ratio	2000	2018	All			MT	No	
RS	Serbia	BC	Yes	Ratio	2000	2018	All			RS	No	
RU	Russian Federation	CO	Yes	Extrapolation/	2000/2018	2009/2018	All	GAINS/Stable	2010/2017		No	
				Extrapolation								
RU	Russian Federation	NH3	Yes	Extrapolation/	2000/2018	2009/2018	All	GAINS/Stable	2010/2017		No	
				Extrapolation								
RU	Russian Federation	NMVOC	Yes	Extrapolation/	2000/2018	2009/2018	All	GAINS/Stable	2010/2017		No	
				Extrapolation								
RU	Russian Federation	NOx	Yes	Extrapolation/	2000/2018	2009/2018	All	GAINS/Stable	2010/2017		No	
				Extrapolation								
RU	Russian Federation	PM10	Yes	Extrapolation/	2000/2018	2009/2018	All	GAINS/Stable	2010/2017		No	
				Extrapolation								

CC	Country	Component	Gapfilling / Replacement required	Method	Start	End	Sectors	Extrapolation trend	Split	Ratio	Interpolation required	Interpolation years
RU	Russian Federation	PM2.5	Yes	Extrapolation/ Extrapolation	2000/2018	2009/2018	All	GAINS/Stable	2010/2017		No	
RU	Russian Federation	SOx	Yes	Extrapolation/ Extrapolation	2000/2018	2009/2018	All	GAINS/Stable	2010/2017		No	
RU	Russian Federation	BC	Yes	Ratio	2000	2018	All			RU	No	
TJ	Tajikistan	CO	Yes	Replacement	2000	2018	All				No	
TJ	Tajikistan	NH3	Yes	Replacement	2000	2018	All				No	
TJ	Tajikistan	NMVOC	Yes	Replacement	2000	2018	All				No	
TJ	Tajikistan	NOx	Yes	Replacement	2000	2018	All				No	
TJ	Tajikistan	PM10	Yes	Replacement	2000	2018	All				No	
TJ	Tajikistan	PM2.5	Yes	Replacement	2000	2018	All				No	
TJ	Tajikistan	SOx	Yes	Replacement	2000	2018	All				No	
TJ	Tajikistan	BC	Yes	Replacement	2000	2018	All				No	
TR	Turkey	CO	Yes	Replacement	2000	2018	F_RoadTransport				No	
TR	Turkey	NMVOC	Yes	Replacement	2000	2018	F_RoadTransport				No	
TR	Turkey	NOx	Yes	Replacement	2000	2018	F_RoadTransport				No	
TR	Turkey	PM10	Yes	Replacement	2000	2018	All				No	
TR	Turkey	PM2.5	Yes	Replacement	2000	2018	All				No	
TR	Turkey	BC	Yes	Replacement	2000	2018	All				No	
UA	Ukraine	CO	Yes	Replacement	2000	2018	All				No	
UA	Ukraine	NH3	Yes	Replacement	2000	2018	All				No	
UA	Ukraine	NMVOC	Yes	Replacement	2000	2018	All				No	
UA	Ukraine	NOx	Yes	Replacement	2000	2018	All				No	
UA	Ukraine	PM10	Yes	Replacement	2000	2018	All				No	
UA	Ukraine	PM2.5	Yes	Replacement	2000	2018	All				No	
UA	Ukraine	SOx	Yes	Extrapolation/ Extrapolation	2000/2017	2007/2018	All	NT/GAINS	2008/2016		No	
UA	Ukraine	BC	Yes	Replacement	2000	2018	All				No	

4. Data availability and gap-filling method for other regions

For a number of regions in the EMEP domain, emissions are not reported because the countries are not Party to the Convention and/or because only part of their respective territories are included within the EMEP grid. Almost all these emissions are also processed as part of the R routine, where the data are sourced and filled as described below. The emissions from international shipping are however filled as part of separate, subsequent step.

4.1. Kazakhstan within the extended EMEP domain (KZE) and outside the extended EMEP domain (KZ)

The final gap-filled emissions for the whole territory of Kazakhstan (KZT) are split between the regions within and outside of the EMEP domain by assuming 15 %: 85 % split between KZ and KZE.

4.2. Russian Federation in the extended EMEP domain (RUE): Rest of Russian Federation in the extended EMEP domain (RFE) and EMEP-external part of Russian Federation (RUX).

The partially gap-filled emissions reported by Russia (RU) are estimates for the Russian territory west of the Urals. This however does not cover the complete part of the Russian territory which is within the extended EMEP domain. The emissions of NOx, NMVOCs, SOx, NH3, CO, PM_{2.5} and PM₁₀ from the rest of the Russian Federation in the extended EMEP domain (RFE) were estimated by interpolating between aggregated grid emissions for the area as taken from EDGAR for 2000, 2005 and 2010. The emissions from 2011 onwards were extrapolated based on the respective relative trends of reported national total emissions for RU. Emissions of BC were estimated by multiplying the gap-filled PM_{2.5} emissions by the GNFR sector-specific BC fractions as calculated from the GAINS estimates of Russian PM_{2.5} and BC emissions. For the EMEP-external part of the Russian Federation (RUX), emissions are calculated in the same fashion.

4.3. Turkmenistan (TM) and Uzbekistan (UZ)

Neither Turkmenistan nor Uzbekistan are Party to the Convention and thus do not report national air pollutant emissions inventories. The emissions from these countries are estimated using the estimates from GAINS ECLIPSE v6b. The dataset provides aggregate regional estimates for area *Former USSR (Asia)*, which incorporates Turkmenistan, Uzbekistan and Tajikistan. The emissions for each country are thus estimated by dividing these aggregate regional emissions based on splits derived from national totals of these countries according to the EDGAR dataset. To maintain mass balance of the particulate emissions, PM₁₀, PM_{2.5} and BC are distributed between the countries based on the relative PM₁₀ split in EDGAR. The subsequent country emissions are then split between territories within the extended domain EMEP domain and the former official EMEP domain.

4.3.1. Rest of Turkmenistan in the extended EMEP domain (TME) and Turkmenistan in the former official EMEP domain (TMO)

The final gap-filled emissions for the whole territory of Turkmenistan (TM) are split between TME and TMO by assuming a 80 %: 20 % split.

4.3.2. Rest of Uzbekistan in the extended EMEP domain (UZE) and Uzbekistan in the former official EMEP domain (UZO)

The final gap-filled emissions for the whole territory of Uzbekistan (TM) are split between UZE and UZO by assuming 97 %: 3 % split.

4.4. Sea regions: Atlantic Ocean (ATL), Baltic Sea (BAS), Black Sea (BLS), Caspian Sea (CAS), Mediterranean Sea (MED), North Sea (NOS)

Emissions from 2000 to 2018 for the sea regions were extracted from CAMS global ship datasets (Finish Meteorological Institute, FMI 2019), provided via ECCAD (<u>https://eccad.aeris-data.fr</u> - CAMS_GLOB_SHIP, v2.1).

Emissions of BC were estimated by multiplying the gap-filled PM_{2.5} emissions by average GNFR sector-specific BC fractions as calculated from the GAINS estimates.

Caspian Sea

For the Caspian Sea, FMI shipping data (FMI 2017) for 2015 were used and extrapolated based on the GDP trend of Kazakhstan.

Emissions of BC were estimated by multiplying the gap-filled PM_{2.5} emissions by average GNFR sector-specific BC fractions as calculated from the GAINS estimates.

4.5. Aral Lake: Rest of Aral Lake in the extended EMEP domain (ARE), Aral Lake in the former official EMEP domain (ARO)

For the Aral Lake, inter- and extrapolated data from EDGAR data for 2000, 2005 and 2010 were used. For shipping, FMI shipping data (FMI 2017) for 2015 were used and extrapolated based on the GDP trend of Kazakhstan. Emissions of BC were estimated by multiplying the gap-filled PM_{2.5} emissions by average GNFR sector-specific BC fractions as calculated from the GAINS estimates.

4.6. Remaining Asian Areas in the extended EMEP domain (ASE) and Modified Remaining Asian Areas in the former official EMEP domain (ASM)

To calculate emissions for the remaining Asian Areas in the extended EMEP domain, aggregated and interpolated grid emissions from EDGAR for 2000, 2005 and 2010, extrapolated with the GDP trend for China, were used. Emissions of BC were estimated by multiplying the gap-filled PM_{2.5} emissions by average GNFR sector-specific BC fractions as calculated from the GAINS estimates.

4.7. North Africa (NOA)

To calculate emissions for North Africa, aggregated and interpolated grid emissions from EDGAR for 2000, 2005 and 2010, extrapolated with the GDP trend for Morocco, were used. Emissions of BC were estimated by multiplying the gap-filled $PM_{2.5}$ emissions by average GNFR sector-specific BC fractions as calculated from the GAINS estimates.

5. References

- Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F. and Winiwarter, W.: Costeffective control of air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Model. Softw., 26(12), 1489–1501, doi:https://doi.org/10.1016/j.envsoft.2011.07.012, 2011.
- CEIP 2020: 'WebDab EMEP database'. CEIP website https://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/
- Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S.,
 Doering, U., Olivier, J. G. J., Pagliari, V. and Janssens-Maenhout, G.: Gridded emissions of air
 pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10(4), 1987–2013, doi:10.5194/essd-10-1987-2018, 2018.

ECCAD 2019: http://www.aeris-data.fr/redirect/CAMS-REG-AP

- FMI 2017: *Global shipping data (2015 and 2011)*. FMI website <u>http://en.ilmatieteenlaitos.fi/</u>
- IIASA 2014: *The GAINS Model*. IIASA website http://www.iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.html
- Kuenen J.J.P., Visschedijk A.J.H., Jozwicka M., Denier van der Gon H.A.C. 2014: TNO-MACC_II emission inventory; A multi-year (2003-2009) consistent high-resolution European emission inventory for air quality modelling. Supplementary material. Atmos. Chem. Phys. 14, 10963-10976. http://www.atmos-chem-phys.net/14/10963/2014/
- UNECE 1979: The 1979 Geneva Convention on Long-range Transboundary Air Pollution. United Nations Economic Commission for Europe. <u>http://www.unece.org/fileadmin//DAM/env/Irtap/full%20text/1979.CLRTAP.e.pdf</u>
- UNECE 2014: Guidelines for Reporting Emissions and Projections Data under the Convention on Longrange Transboundary Air Pollution. United Nations Economic Commission for Europe (ECE/EB.AIR/125).

http://www.ceip.at/fileadmin/inhalte/emep/2014_Guidelines/ece.eb.air.125_ADVANCE_VERS ION_reporting_guidelines_2013.pdf

Annex I: EMEP Country Codes

AL	Albania	IE	Ireland
AM	Armenia	IS	Iceland
AOE	Arctic Ocean in the extended EMEP	IT	Italy
	domain	KG	Kyrgyzstan
ARE	Rest of Aral Lake in the extended	ΚZ	Kazakhstan in the former official EMEP
	EMEP domain		domain (KZ+KZE = KZT)
ARO	Aral Lake in the former official EMEP	KZE	Rest of Kazakhstan in the extended
	domain		EMEP domain (KZ+KZE = KZT)
AST	Asian areas in the extended EMEP	KZT	Kazakhstan (KZ+KZE)
	domain (ASM+ASE+ARO+ARE+CAS)	LI	Liechtenstein
AT	Austria	LT	Lithuania
ATL	Remaining North-East Atlantic Ocean	LU	Luxembourg
ATX	EMEP-external Remaining North-East	LV	Latvia
	Atlantic Ocean	MC	Monaco
AZ	Azerbaijan	MD	Republic of Moldova
BA	Bosnia and Herzegovina	ME	Montenegro
BAS	Baltic Sea	MED	Mediterranean Sea
BE	Belgium	MK	North Macedonia
BG	Bulgaria	MT	Malta
BLS	Black Sea	NL	Netherlands
BY	Belarus	NO	Norway
CA	Canada	NOA	North Africa
CAS	Caspian Sea	NOS	North Sea
СН	Switzerland	PL	Poland
CY	Cyprus	PT	Portugal
CZ	Czechia	RFE	Rest of Russian Federation in the
DE	Germany (FGD+FFR)		extended EMEP domain (RUX+RFE =
DK	Denmark		RUE)
EE	Estonia	RO	Romania
ES	Spain	RS	Serbia
EU	European Union	RU	Russian Federation in the former
FFR	Former Federal Republic of Germany		official EMEP domain
	(FGD+FFR = DE)		(RUO+RUP+RUA+RUR)
FGD	Former German Democratic Republic	RUA	Kaliningrad (RUO+RUP+RUA+RUR =
	(FGD+FFR = DE)		RU)
FI	Finland	RUE	Russian Federation in the extended
FR	France		EMEP domain (RFE+RUX)
GB	United Kingdom	RUO	Kola & Karelia (RUO+RUP+RUA+RUR =
GE	Georgia		
GL	Greenland	RUP	St.Petersburg & Novgorod-Pskov
GR	Greece		(KUO+RUP+RUA+RUR = RU)
HR	Croatia	KUR	Rest of the Russian Federation
HU	Hungary		(KUU+KUP+KUA+KUK = KU)

- RUX EMEP-external part of Russian
 - Federation (RUX+RFE = RUE)
- SE Sweden
- SI Slovenia
- SK Slovakia
- TJ Tajikistan
- TM Turkmenistan (TMO+TME)
- TME Rest of Turkmenistan in the extended EMEP domain (TMO+TME = TM)
- TMO Turkmenistan in the former official EMEP domain (TMO+TME = TM)

- TR Turkey
- UA Ukraine
- US United States
- UZ Uzbekistan (UZO+UZE)
- UZE Rest of Uzbekistan in the extended EMEP domain (UZO+UZE = UZ)
- UZO Uzbekistan in the former official EMEP domain (UZO+UZE = UZ)

Table A 1: Countries of the EMEP West and EMEP East region

EMEP West countries	AL, AT, BA, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LI, LT, LU, LV, MC, ME, MK, MT, NL, NO, PL,
	PT, RO, RS, SE, SI, SK
EMEP East countries	AM, AZ, BY, GE, KG, KZT, MD, RU, TR, UA
(9 EECCA countries + TR)	
Non-EMEP EECCA countries	TJ, TM, UZ
(CLRTAP not ratified)	
EMEP countries outside the	CA, US
EMEP domain	

Note: EECCA = Eastern Europe, Caucasus and Central Asia

Annex II: Cross-walk between NFR and GNFR sectors

Table A 2: Legend explaining the code names of the NFR sectors for source-sector level emissions reporting under the LRTAP Convention and the aggregated GNFR sectors to which they belong

GNFR Code	NFR Code	NFR Long name	Additional Notes
A_PublicPower	1A1a	Public electricity and heat production	
B_Industry	1A1b	Petroleum refining	
B_Industry	1A1c	Manufacture of solid fuels and other energy	
		industries	
B_Industry	1A2a	Stationary combustion in manufacturing industries	
		and construction: Iron and steel	
B_Industry	1A2b	Stationary combustion in manufacturing industries	
		and construction: Non-ferrous metals	
B_Industry	1A2c	Stationary combustion in manufacturing industries	
		and construction: Chemicals	
B_Industry	1A2d	Stationary combustion in manufacturing industries	
		and construction: Pulp, Paper and Print	
B_Industry	1A2e	Stationary combustion in manufacturing industries	
		and construction: Food processing, beverages and	
		tobacco	
B_Industry	1A2f	Stationary combustion in manufacturing industries	
		and construction: Non-metallic minerals	
I_Offroad	1A2gvii	Mobile Combustion in manufacturing industries	
		and construction: (please specify in the IIR)	
B_Industry	1A2gviii	Stationary combustion in manufacturing industries	
		and construction: Other (please specify in the IIR)	
H_Aviation	1A3ai(i)	International aviation LTO (civil)	
H_Aviation	1A3aii(i)	Domestic aviation LTO (civil)	
F_RoadTransport	1A3bi	Road transport: Passenger cars	
F_RoadTransport	1A3bii	Road transport: Light duty vehicles	
F_RoadTransport	1A3biii	Road transport: Heavy duty vehicles and buses	
F_RoadTransport	1A3biv	Road transport: Mopeds & motorcycles	
F_RoadTransport	1A3bv	Road transport: Gasoline evaporation	
F_RoadTransport	1A3bvi	Road transport: Automobile tyre and brake wear	
F_RoadTransport	1A3bvii	Road transport: Automobile road abrasion	
I_Offroad	1A3c	Railways	
G_Shipping	1A3di(ii)	International inland waterways	
G_Shipping	1A3dii	National navigation (shipping)	
I_Offroad	1A3ei	Pipeline transport	
I_Offroad	1A3eii	Other (please specify in the IIR)	
C_OtherStationaryComb	1A4ai	Commercial/institutional: Stationary	
I_Offroad	1A4aii	Commercial/institutional: Mobile	
C_OtherStationaryComb	1A4bi	Residential: Stationary	
I_Offroad	1A4bii	Residential: Household and gardening (mobile)	
C_OtherStationaryComb	1A4ci	Agriculture/Forestry/Fishing: Stationary	
I_Offroad	1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and	
		other machinery	
I_Offroad	1A4ciii	Agriculture/Forestry/Fishing: National fishing	
C_OtherStationaryComb	1A5a	Other stationary (including military)	
I_Offroad	1A5b	Other, Mobile (including military, land based and	
		recreational boats)	
D_Fugitive	1B1a	Fugitive emission from solid fuels: Coal mining and	
D. Fusikius	1016	Indiruming	
D_Fugitive	TRTD	rugilive emission from solid fuels: Solid fuel	
D. Eugitivo	1010	Other furitive emissions from actid finals	
D_Fugitive	1010	Eugitive emissions city Evolution, and duction	
	TPZqI	rugitive emissions on: exploration, production,	
D. Eugitivo	182514	Eugitive emissions oil: Pofining / storage	
	TOZAIV	I ABILIVE ETTISSIONS OII. NETTING / SLUIDE	1

D_Fugitive	1B2av	Distribution of oil products	
D_Fugitive	1B2b	Fugitive emissions from natural gas (exploration,	
		production, processing, transmission, storage,	
		distribution and other)	
D_Fugitive	1B2c	Venting and flaring (oil, gas, combined oil and gas)	
D_Fugitive	1B2d	Other fugitive emissions from energy production	
B_Industry	2A1	Cement production	
B_Industry	2A2	Lime production	
B_Industry	2A3	Glass production	
B_Industry	2A5a	Quarrying and mining of minerals other than coal	
B_Industry	2A5b	Construction and demolition	
B_Industry	2A5c	Storage, handling and transport of mineral	
		products	
B_Industry	2A6	Other mineral products (please specify in the IIR)	
B_Industry	2B1	Ammonia production	
B_Industry	2B2	Nitric acid production	
B_Industry	2B3	Adipic acid production	
B_Industry	2B5	Carbide production	
B_Industry	2B6	Intanium dioxide production	
B_Industry	2B7	Soda ash production	
B_Industry	2B10a	Chemical industry: Other (please specify in the	
	20401		
B_Industry	2B10b	Storage, handling and transport of chemical	
D. In duration :	201	products (please specify in the IIR)	
B_Industry	201	Iron and steel production	
B_Industry	202	Ferroalloys production	
B_Industry	203	Aluminium production	
B_Industry	204	Magnesium production	
B_Industry	205	Lead production	
B_Industry	200		
B_Industry	2C7a	Nickel production	
B_Industry	2070	Other metal meduation (along english in the UD)	
B_Industry	2070	Uther metal production (please specify in the IIR)	
B_INDUSTRY	2070	Storage, nandling and transport of metal products	
E Solvente	2022	(please specify in the lik)	
L_Solvents	2D3a 2D2b	Pood paving with asphalt	
B_Industry	2030	Asphalt roofing	
E Solvents	2D3d	Coating applications	
E_Solvents	2D3e	Degreasing	
E_Solvents	2D3f	Dry cleaning	
E_Solvents	2D3g	Chemical products	
E_Solvents	2D3b	Printing	
E Solvents	2D3i	Other solvent use (please specify in the IIR)	
E Solvents	2G	Other product use (please specify in the IIR)	
B Industry	2H1	Pulp and paper industry	
B Industry	2H2	Food and beverages industry	
B Industry	2H3	Other industrial processes (please specify in the	
	-	IIR)	
B_Industry	21	Wood processing	
B_Industry	2J	Production of POPs	
B_Industry	2K	"Consumption of POPs and heavy metals (e.g.	
		electrical and scientific equipment)"	
B_Industry	2L	Other production, consumption, storage,	
		transportation or handling of bulk products (please	
		specify in the IIR)	
K_AgriLivestock	3B1a	Manure management - Dairy cattle	
K_AgriLivestock	3B1b	Manure management - Non-dairy cattle	
K_AgriLivestock	3B2	Manure management - Sheep	
K_AgriLivestock	3B3	Manure management - Swine	
K_AgriLivestock	3B4a	Manure management - Buffalo	
K_AgriLivestock	3B4d	Manure management - Goats	

K_AgriLivestock	3B4e	Manure management - Horses	
K_AgriLivestock	3B4f	Manure management - Mules and asses	
K_AgriLivestock	3B4gi	Manure mangement - Laying hens	
K_AgriLivestock	3B4gii	Manure mangement - Broilers	
K AgriLivestock	3B4giii	Manure mangement - Turkeys	
K AgriLivestock	3B4giv	Manure management - Other poultry	
K_AgriLivestock	3B4h	Manure management - Other animals (please	
		specify in IIR)	
L_AgriOther	3Da1	Inorganic N-fertilizers (includes also urea	
		application)	
L_AgriOther	3Da2a	Animal manure applied to soils	
L_AgriOther	3Da2b	Sewage sludge applied to soils	
L_AgriOther	3Da2c	"Other organic fertilisers applied to soils (including	
		compost)"	
L_AgriOther	3Da3	Urine and dung deposited by grazing animals	
L_AgriOther	3Da4	Crop residues applied to soils	
L_AgriOther	3Db	Indirect emissions from managed soils	
L_AgriOther	3Dc	Farm-level agricultural operations including	
		storage, handling and transport of agricultural	
		products	
L_AgriOther	3Dd	Off-farm storage, handling and transport of bulk	
		agricultural products	
L_AgriOther	3De	Cultivated crops	
L_AgriOther	3Df	Use of pesticides	
L_AgriOther	3F	Field burning of agricultural residues	
L_AgriOther	31	Agriculture other (please specify in the IIR)	
J_Waste	5A	Biological treatment of waste - Solid waste	
		disposal on land	
J_Waste	5B1	Biological treatment of waste - Composting	
J_Waste	5B2	Biological treatment of waste - Anaerobic digestion	
		at biogas facilities	
J_Waste	5C1a	Municipal waste incineration	
J_Waste	5C1bi	Industrial waste incineration	
J_Waste	5C1bii	Hazardous waste incineration	
J_Waste	5C1biii	Clinical waste incineration	
J_Waste	5C1biv	Sewage sludge incineration	
J_Waste	5C1bv	Cremation	
J_Waste	5C1bvi	Other waste incineration (please specify in the IIR)	
J_Waste	5C2	Open burning of waste	
J_Waste	5D1	Domestic wastewater handling	
J_Waste	5D2	Industrial wastewater handling	
J_Waste	5D3	Other wastewater handling	
J_Waste	5E	Other waste (please specify in IIR)	
M_Other	6A	Other (included in national total for entire	
		territory) (please specify in IIR)	